Version Fonctionnelle
This commit is contained in:
259
extract_endoconnect_pdf.py
Normal file
259
extract_endoconnect_pdf.py
Normal file
@@ -0,0 +1,259 @@
|
||||
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import requests
|
||||
import pandas as pd
|
||||
import openpyxl
|
||||
import questionary
|
||||
from rich.console import Console
|
||||
from rich.logging import RichHandler
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn
|
||||
from rich import print as rprint
|
||||
from rich.panel import Panel
|
||||
from datetime import datetime
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# CONSTANTS & CONFIGURATION
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
# API Configuration
|
||||
API_URL = "https://api-endo.ziwig.com"
|
||||
LOGIN_ENDPOINT = "/api/auth/login"
|
||||
PDF_ENDPOINT_TEMPLATE = "/api/records/pdf/{}"
|
||||
|
||||
# Defaults (User Configurable via Prompt)
|
||||
DEFAULT_USER_EMAIL = "abdel.lhachimi@gmail.com"
|
||||
DEFAULT_USER_PASSWORD = "GU$y#C#Cv73XFKyT3j6^"
|
||||
DEFAULT_EXCEL_PATH = r"E:\Ziwig Drive\Ziwig Health\Data\Patients\Records_Status.xlsm"
|
||||
DEFAULT_OUTPUT_ROOT = r"Temp PDF"
|
||||
|
||||
# Constants (Code Configurable Only)
|
||||
SHEET_TABLE_NAME = "Records_Status" # Name of the Excel Table (ListObject)
|
||||
COL_PATIENT_ID = "id" # Column name for Patient ID
|
||||
COL_PATIENT_NAME = "fullName" # Column name for Patient Name
|
||||
COL_RECORD_FINISHED = "isFinished" # Column name for boolean flag
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# SETUP COSOLE
|
||||
# -----------------------------------------------------------------------------
|
||||
console = Console()
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# FUNCTIONS
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
def get_credentials():
|
||||
"""Prompts for credentials, reiterates on login failure."""
|
||||
while True:
|
||||
email = questionary.text("Enter Endoconnect Email:", default=DEFAULT_USER_EMAIL).ask()
|
||||
if not email:
|
||||
console.print("[red]User email cannot be empty. Exiting.[/red]")
|
||||
sys.exit(1)
|
||||
|
||||
password = questionary.password("Enter Endoconnect Password:", default=DEFAULT_USER_PASSWORD).ask()
|
||||
|
||||
# Verify credentials
|
||||
with console.status("[bold green]Verifying credentials...") as status:
|
||||
token = login(email, password)
|
||||
if token:
|
||||
console.print("[bold green]Login successful![/bold green]")
|
||||
return token, email
|
||||
else:
|
||||
console.print("[bold red]Login failed. Please try again.[/bold red]")
|
||||
|
||||
def login(email, password):
|
||||
"""Authenticates with the API and returns the token or None."""
|
||||
url = f"{API_URL}{LOGIN_ENDPOINT}"
|
||||
payload = {
|
||||
"email": email,
|
||||
"password": password,
|
||||
"rememberMe": None
|
||||
}
|
||||
try:
|
||||
response = requests.post(url, json=payload, timeout=10)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data.get("token")
|
||||
except requests.exceptions.RequestException as e:
|
||||
# console.print(f"[red]API Error: {e}[/red]")
|
||||
return None
|
||||
|
||||
def get_excel_table_data(file_path, table_name):
|
||||
"""
|
||||
Locates an Excel Table by name in any sheet and returns it as a DataFrame.
|
||||
"""
|
||||
try:
|
||||
wb = openpyxl.load_workbook(file_path, data_only=True)
|
||||
except Exception as e:
|
||||
console.print(f"[bold red]Error loading Excel file: {e}[/bold red]")
|
||||
sys.exit(1)
|
||||
|
||||
target_sheet = None
|
||||
target_range = None
|
||||
|
||||
# Search for the table in all sheets
|
||||
for sheet_name in wb.sheetnames:
|
||||
ws = wb[sheet_name]
|
||||
if table_name in ws.tables:
|
||||
target_sheet = ws
|
||||
target_range = ws.tables[table_name].ref
|
||||
break
|
||||
|
||||
if not target_sheet:
|
||||
console.print(f"[bold red]Table '{table_name}' not found in workbook.[/bold red]")
|
||||
sys.exit(1)
|
||||
|
||||
# Extract data from the range
|
||||
data_rows = []
|
||||
# ws[target_range] returns a tuple of rows
|
||||
rows = list(target_sheet[target_range])
|
||||
|
||||
if not rows:
|
||||
return pd.DataFrame()
|
||||
|
||||
# First row is header
|
||||
headers = [cell.value for cell in rows[0]]
|
||||
|
||||
for row in rows[1:]:
|
||||
values = [cell.value for cell in row]
|
||||
data_rows.append(values)
|
||||
|
||||
df = pd.DataFrame(data_rows, columns=headers)
|
||||
return df
|
||||
|
||||
def download_pdf(token, patient_id, output_path, patient_name):
|
||||
"""Downloads the PDF for a patient."""
|
||||
url = f"{API_URL}{PDF_ENDPOINT_TEMPLATE.format(patient_id)}"
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
|
||||
start_time = time.time()
|
||||
try:
|
||||
response = requests.get(url, headers=headers, stream=True, timeout=30)
|
||||
response.raise_for_status()
|
||||
|
||||
with open(output_path, 'wb') as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
|
||||
duration = time.time() - start_time
|
||||
return True, duration, None
|
||||
except Exception as e:
|
||||
return False, 0, str(e)
|
||||
|
||||
def sanitize_filename(name):
|
||||
"""Sanitizes the patient name for use as a filename."""
|
||||
invalid_chars = '<>:"/\\|?*'
|
||||
for char in invalid_chars:
|
||||
name = name.replace(char, '_')
|
||||
return name.strip()
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# MAIN
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
def main():
|
||||
console.print(Panel.fit("[bold blue]Endoconnect Patient PDF Extractor[/bold blue]"))
|
||||
|
||||
# 1. Credentials
|
||||
token, user_email = get_credentials()
|
||||
|
||||
# 2. Configuration (Excel & Output)
|
||||
excel_path = questionary.path("Path to Excel file:", default=DEFAULT_EXCEL_PATH).ask()
|
||||
if not os.path.exists(excel_path):
|
||||
console.print(f"[bold red]File not found: {excel_path}[/bold red]")
|
||||
sys.exit(1)
|
||||
|
||||
# Output Directory
|
||||
today_str = datetime.now().strftime("PDFs-%Y%m%d")
|
||||
default_output_dir = os.path.join(DEFAULT_OUTPUT_ROOT, today_str)
|
||||
|
||||
output_dir = questionary.path("Output Directory:", default=default_output_dir).ask()
|
||||
|
||||
if not os.path.exists(output_dir):
|
||||
try:
|
||||
os.makedirs(output_dir)
|
||||
console.print(f"[green]Created output directory: {output_dir}[/green]")
|
||||
except Exception as e:
|
||||
console.print(f"[bold red]Could not create directory: {e}[/bold red]")
|
||||
sys.exit(1)
|
||||
|
||||
console.print() # Spacing
|
||||
|
||||
# 3. Read Data
|
||||
console.print(f"Reading table '{SHEET_TABLE_NAME}' from Excel...")
|
||||
df = get_excel_table_data(excel_path, SHEET_TABLE_NAME)
|
||||
console.print() # Spacing
|
||||
|
||||
# Validation
|
||||
required_cols = [COL_PATIENT_ID, COL_PATIENT_NAME, COL_RECORD_FINISHED]
|
||||
missing_cols = [c for c in required_cols if c not in df.columns]
|
||||
if missing_cols:
|
||||
console.print(f"[bold red]Missing columns in table: {', '.join(missing_cols)}[/bold red]")
|
||||
sys.exit(1)
|
||||
|
||||
# Filter
|
||||
# Ensure record_finished is treated as boolean
|
||||
# Handle various truthy values just in case (though Excel boolean is usually 1/0 or True/False)
|
||||
# df[COL_RECORD_FINISHED] = df[COL_RECORD_FINISHED].astype(bool) # Might be risky if nulls
|
||||
|
||||
# Safe filtering for True values
|
||||
patients_to_process = df[df[COL_RECORD_FINISHED] == True] # Direct comparison for boolean or 1
|
||||
|
||||
total_patients = len(patients_to_process)
|
||||
console.print(f"[bold]Found {total_patients} patients to process.[/bold]")
|
||||
console.print() # Add spacing
|
||||
|
||||
if total_patients == 0:
|
||||
console.print("[yellow]No patients found with record_finished=True. Exiting.[/yellow]")
|
||||
return
|
||||
|
||||
# 4. Processing Loop
|
||||
|
||||
# Let's refactor loop to be safer
|
||||
records = patients_to_process.to_dict('records')
|
||||
|
||||
for i, record in enumerate(records, start=1):
|
||||
p_id = record[COL_PATIENT_ID]
|
||||
p_name_raw = record[COL_PATIENT_NAME]
|
||||
|
||||
# Normalize Name: Remove extra spaces and Title Case
|
||||
if p_name_raw:
|
||||
p_name = " ".join(str(p_name_raw).split()).title()
|
||||
else:
|
||||
p_name = "Unknown_Patient"
|
||||
|
||||
safe_name = sanitize_filename(p_name)
|
||||
filename = f"{safe_name}.pdf"
|
||||
file_path = os.path.join(output_dir, filename)
|
||||
|
||||
# Display Message with colored filename
|
||||
# We construct the visible message separately from the status simple text if needed,
|
||||
# but rich status supports markup.
|
||||
prefix = f"{i}/{total_patients} -"
|
||||
msg_colored = f"{prefix} Downloading [bold cyan]{filename}[/bold cyan]"
|
||||
msg_plain = f"{prefix} Downloading {filename}"
|
||||
|
||||
with console.status(msg_colored, spinner="dots") as status:
|
||||
success, duration, error = download_pdf(token, p_id, file_path, p_name)
|
||||
|
||||
if success:
|
||||
console.print(f"[bold green]✓[/bold green] {msg_colored} ({duration:.2f}s)")
|
||||
else:
|
||||
console.print(f"[bold red]✗[/bold red] {msg_colored} [red]ERROR: {error}[/red]")
|
||||
|
||||
|
||||
console.print(Panel("[bold green]Extraction Finished![/bold green]"))
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except KeyboardInterrupt:
|
||||
console.print("\n[yellow]Script interrupted by user.[/yellow]")
|
||||
sys.exit(0)
|
||||
except Exception as e:
|
||||
console.print(f"\n[bold red]An unexpected error occurred: {e}[/bold red]")
|
||||
sys.exit(1)
|
||||
finally:
|
||||
console.print()
|
||||
input("Press Enter to close...")
|
||||
Reference in New Issue
Block a user